1

Fundamentals of Solid State Physics

Semiconductors - General

Xing Sheng 盛兴

Department of Electronic Engineering Tsinghua University <u>xingsheng@tsinghua.edu.cn</u>

Further Reading

- Ashcroft & Mermin, Chapter 28
- Solid State Electronic Devices by Streetman, Chap.3

Electronic Properties of Materials

Metal

SiO

Metal, Insulator, Semiconductor

Insulator

Semiconductor

Metal

Semiconductors - General Concepts

- Band diagram E(k)
- Band gap E_g
- Effective mass m*
- Holes
- Density of States (DOS) g(E)
- Density of Carriers n_c and p_v
 - Mass Action Law
- Intrinsic and Extrinsic

Semiconductors - Applications

semiconductors are the basis of electronics and photonics

integrated circuits

LEDs

lasers

detectors

solar cells

Semiconductor 半导体

Ε

Band Structure / Diagram 能带图

Free electrons

energy

velocity

 $v = \frac{\hbar k}{m} = \frac{1}{\hbar} \frac{dE(k)}{dk}$

momentum

electron mass

$$\frac{1}{m} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

E-k diagram (energy dispersion curve)

K

Band Structure / Diagram 能带图

energy band gap

crystal momentum (*not* electron momentum) $\hbar k$

 E_{g}

group velocity

$$v_g = \frac{1}{\hbar} \frac{dE(k)}{dk}$$

or

$$\mathbf{v} = \frac{1}{\hbar} \nabla_{\mathbf{k}} E(\mathbf{k})$$

E-k diagram (energy dispersion curve)

-

Band Gap *E*_g

$$E_{g} = 2V_{1}$$

Q: Why?

III	IV	V			H¢
5	6	7	8	9	10
B	C	N	0	F	Ne
13	14	15	16	17	18
Al	Si	P	S	CI	Ar
31	32	33	34	35	36
Ga	Ge	As	Se	Br	Kr
49	50	51	52	53	54
In	Sn	Sb	Te		Xe
81	82	83	84	85	86
TI	Pb	Bi	Po	At	Rn

the nearly free electron model

at *T* = 300 K

	a (Å)	E_{g} (eV)
C (diamond)	3.57	5.5
Si	5.43	1.1
Ge	5.66	0.66
α -Sn	6.49	0.08

11

Band Gap E_g

Band Gap E_g

	E_{g} (eV)		E_g (eV)
Si	1.1	Ge	0.7
AIP	2.5	GaAs	1.4
MgS	4.0	ZnSe	3.5
NaCI	8.5	KBr	7.5

Si < AIP < MgS < NaCl

Ge < GaAs < ZnSe < KBr

more polarity -> larger V₁ -> larger E_q

Direct and Indirect Gaps

Direct and Indirect Gaps

Silicon - indirect

GaAs - direct

Measurement of Band Gaps

Measurement of Band Gaps

wavelength dependent optical absorption

Example: Zn₂SnO₄ nanoparticles

Measurement of Band Gaps

$$\left| E_g = \frac{hc}{\lambda_g} \right| \rightarrow$$

$$E(eV) = \frac{1240}{\lambda(nm)}$$

	${\it E}_g$ (eV)		
Si	1.1		
Ge	0.66		
GaAs	1.43		

effective mass

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

The mass that an electron "seems" to have in a solid. It has nothing to do with the free electron mass m_0

For 3D solids, a tensor form

 m^* is a function of k, can be smaller or larger than m_0 , even can be negative

F

Effective Mass 有效质量

effective mass

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

The mass that an electron "seems" to have in a solid. It has nothing to do with the free electron mass m_0

For 3D solids, a tensor form

$$\frac{1}{\mathbf{M}_{ij}^*} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k_i \partial k_j}$$

 m^* is a function of k, can be smaller or larger than m_0 , even can be negative

$$m_0 = 9.11^{*}10^{-31} \text{ kg}$$
 20

Ea

The actual effective mass is a tensor, depending on the location (k_x, k_y, k_z)

Approximation is taken for different calculations.

The actual effective mass is a tensor, depending on the location (k_x, k_y, k_z)

The actual effective mass is a tensor, depending on the location (k_x, k_y, k_z)

close to band minimum parabolic approximation

$$E(k) \approx E_0 + \frac{\hbar^2}{2m^*} (k - k_0)^2$$

3D DOS

$$g(E) = \frac{dn}{dE} = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2}\right)^{3/2} (E - E_0)^{1/2}$$

Lecture Note 3.1

The actual effective mass is a tensor, depending on the location (k_x, k_y, k_z)

Approximation is taken for different calculations:

- Density of states calculations

$$g(E) = \frac{dn}{dE} = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2}\right)^{3/2} (E - E_0)^{1/2}$$

- Conductivity / mobility calculations

$$\sigma = ne\mu = ne^2 \frac{\tau}{m^*}$$

https://ecee.colorado.edu/~bart/book/effmass.htm 24

The actual effective mass is a tensor, depending on the location (k_x, k_y, k_z)

Approximation is taken for different calculations.

	Symbol	Germanium	Silicon	Gallium Arsenide
Smallest energy bandgap at 300 K	E_g (eV)	0.66	1.12	1.424
Effective mass for density of states calculations				
Electrons	me*,dos/m0	0.56	1.08	0.067
Holes	mh*,dos/m0	0.29	0.57/0.811	0.47
Effective mass for conductivity calculations				
Electrons	me*,cond/m0	0.12	0.26	0.067
Holes	mh*,cond/m0	0.21	0.36/0.3861	0.34
Free electron mass	m_0 (kg)	ĩ	9.11 x 10 ⁻³¹	

 Table 2.3.4
 Effective masses for both density of states and conductivity calculations.

effective mass

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

inverse curvature of the parabolic curve

effective mass

We conventionally use *holes* to analyze the electron behaviors in VB

We conventionally use *holes* to analyze the electron behaviors in VB

© 2006 www.radartutorial.de

hole is a quasi-particle (准粒子), different from positron (正电子)

We conventionally use *holes* to analyze the electron behaviors in VB

air bubbles in water

In VB, properties of a hole compared to a missing electron in the same position of the band

Singleton, p45-p46

Particles that conduct electrical current: electrons in CB and holes in VB

in CB

 $m_{e}^{*} > 0$

in VB

hole mobility

electron mobility

Particles that conduct electrical current: electrons in CB and holes in VB

$$\begin{vmatrix} \frac{\hbar^2}{2m} (k-g)^2 - E & -V_1 \\ -V_1 & \frac{\hbar^2}{2m} k^2 - E \end{vmatrix} = 0$$

$$\left[\frac{\hbar^2}{2m}(k-g)^2 - E\right]\left[\frac{\hbar^2}{2m}k^2 - E\right] - V_1^2 = 0$$

$$E_1(k), E_2(k)$$

Nearly Free electron ---->

$$V_1 \neq 0$$

and

$$V_1 \ll \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2$$

$$\left[\frac{\hbar^2}{2m}(k-g)^2 - E\right] \left[\frac{\hbar^2}{2m}k^2 - E\right] - V_1^2 = 0$$

$$- E_{\pm}(k) = \frac{(A+B) \pm \sqrt{(A-B)^2 + 4V_1^2}}{2}$$

$$A = \frac{\hbar^2}{2m}k^2 \qquad B = \frac{\hbar^2}{2m}(k-g)^2$$

Nearly Free electron -

$$V_1 \neq 0$$
 and

$$V_1 \ll \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2$$

$$\left[\frac{\hbar^2}{2m}(k-g)^2 - E\right] \left[\frac{\hbar^2}{2m}k^2 - E\right] - V_1^2 = 0$$

when $k = \pi/a$

$$E_{+}\left(k = \frac{\pi}{a}\right) = \frac{\hbar^{2}}{2m}\left(\frac{\pi}{a}\right)^{2} + |V_{1}|$$
$$E_{-}\left(k = \frac{\pi}{a}\right) = \frac{\hbar^{2}}{2m}\left(\frac{\pi}{a}\right)^{2} - |V_{1}|$$

Nearly Free electron \longrightarrow $V_1 \neq 0$

$$\left[\frac{\hbar^2}{2m}(k-g)^2 - E\right] \left[\frac{\hbar^2}{2m}k^2 - E\right] - V_1^2 = 0$$

when $k \sim \pi/a$, $(A - B) \sim 0$, take the first order approximation

$$E_{\pm}(k) = \frac{(A+B) \pm \sqrt{(A-B)^2 + 4V_1^2}}{2}$$

$$E_{\pm}(k) \approx \frac{A+B}{2} \pm V_1 \left[1 + \frac{1}{2} \frac{(A-B)^2}{4V_1^2} \right]$$

$$E_{\pm}(k) \approx \frac{A+B}{2} \pm V_1 \left[1 + \frac{1}{2} \frac{(A-B)^2}{4V_1^2} \right]$$

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

$$\int \frac{m_e^*}{m_0} \approx \frac{1}{C/V_1 + 1}$$

$$\frac{m_h^*}{m_0} \approx \frac{1}{C/V_1 - 1}$$

For many semiconductors, V_1 is very small ($C/V_1 \sim 1-10$)

$$m_e^* < m_h^* < m_0$$

- m_e^* in CB is smaller than m_h^* in VB
- small V₁ ----> small m* ----> large mobility μ

Examples

(electrons have more freedom than holes)

Examples

	a (Å)	E _g (eV)	m_e* / m₀	<i>m_h* / m₀</i>	μ _e (cm²/V/s)	μ _h (cm²/V/s)
Si	5.43	1.1	0.26	0.38	1350	450
Ge	5.66	0.66	0.12	0.23	3900	1900
-	-	-	-	-	-	-
GaAs	5.65	1.42	0.067	0.45	8500	400
InAs	6.06	0.35	0.022	0.40	33000	450

* effective mass for conductivity

- 1. large atoms ----> small V₁ ----> small E_g ----> small m^* ----> large mobility μ
- 2. $m_e^* < m_h^* < m_0$ 3. $\mu_e^* > \mu_h^*$

Examples

	a (Å)	E _g (eV)	m_e* / m₀	<i>m_h* / m₀</i>	μ _e (cm²/V/s)	μ_h
Si	5.43	1.1	0.26	0.38	1350	450
Ge	5.66	0.66	0.12	0.23	3900	1900
-	-	-	-	-	-	-
GaAs	5.65	1.42	0.067	0.45	8500	400
InAs	6.06	0.35	0.022	0.40	33000	450

* effective mass for conductivity

larger atoms
----> electrons have more freedom
----> smaller m*, move faster

Particles that conduct electrical current: electrons in CB and holes in VB

electrical conductivity

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

Q: How to calculate carrier densities?

 n_c and p_v (#/cm³)

Band Diagram of Semiconductors

The peaks and valleys of VB and CB can be approximately by *parabolic functions*

Band Diagram of Semiconductors

The peaks and valleys of VB and CB can be approximately by *parabolic functions*

Q: How many electrons and holes?

Density of States (DOS) 态密度

Density of States (DOS) 态密度

DOS - number of energy states/levels per unit energy in [*E*, *E*+*dE*], per unit volume

Density of electrons = DOS * probability *f* Density of holes = DOS * (1-f)

$$f(E) = \frac{1}{e^{(E-\mu)/k_BT} + 1}$$

$$1 - f(E) = 1 - \frac{1}{e^{(E-\mu)/k_BT} + 1} = \frac{1}{e^{(\mu-E)/k_BT} + 1}$$

Chemical Potential

For pure semiconductors (intrinsic), the chemical potential μ (Fermi level E_F) lie within the band gap.

Fermi Energy *E_F* - A Little Note

In metals, Fermi energy/level E_F is the highest occupied state of electrons at T = 0 K.

In semiconductors, Fermi energy/level E_F is referred to the chemical potential μ , which is inside the gap. No electrons at E_F !

"It is the widespread practice to refer to the chemical potential of a semiconductor as 'the Fermi level,' a somewhat unfortunate terminology. ... The term 'Fermi level' should be regarded as nothing more than a synonym for 'chemical potential,' in the context of semiconductors."

---- Ashcroft & Mermin, p573

Density of Carriers = DOS * Probability

Intrinsic

electrons in CB

$$n_c = \int_{E_c}^{+\infty} g_c(E) \cdot f(E) dE$$

If μ is in the gap, assume

$$E_c - \mu \gg k_B T$$

$$f(E) = \frac{1}{e^{(E-\mu)/k_BT} + 1}$$
$$\approx e^{-(E-\mu)/k_BT}$$

holes in VB

$$p_{v} = \int_{-\infty}^{E_{v}} g_{v}(E) \cdot \left[1 - f(E)\right] dE$$

$$\mu - E_v \gg k_B T$$

$$1 - f(E) = \frac{1}{e^{(\mu - E)/k_B T} + 1}$$
$$\approx e^{-(\mu - E)/k_B T}$$

Non-Degenerate semiconductors (非简并半导体): Fermi-Dirac is approximated by Maxwell-Boltzmann distribution not valid for high temperature or small band gap

electrons in CB

$$\begin{aligned} n_{c} &= \int_{E_{c}}^{+\infty} g_{c}(E) \cdot f(E) dE \\ &= \int_{E_{c}}^{+\infty} \frac{1}{2\pi^{2}} \left(\frac{2m_{e}^{*}}{\hbar^{2}} \right)^{3/2} (E - E_{c})^{1/2} \cdot e^{-(E - \mu)/k_{B}T} dE \\ &= \frac{1}{4} \left(\frac{2m_{e}^{*} k_{B}T}{\pi \hbar^{2}} \right)^{3/2} e^{-(E_{c} - \mu)/k_{B}T} \\ &= N_{c}(T) e^{-(E_{c} - \mu)/k_{B}T} \end{aligned}$$

$$N_{c}(T) = \frac{1}{4} \left(\frac{2m_{e}^{*}k_{B}T}{\pi\hbar^{2}} \right)^{3/2} = 2.5 \left(\frac{m_{e}^{*}}{m_{0}} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

note here we use the integral

$$\int_{0}^{+\infty} x^{1/2} \cdot e^{-x/a} dx = \frac{\sqrt{\pi}}{2} a^{3/2}$$

SO

$$\int_{E_c}^{+\infty} (E - E_c)^{1/2} \cdot e^{-(E - \mu)/k_B T} dE$$
$$= \frac{\sqrt{\pi}}{2} (k_B T)^{3/2} e^{-(E_c - \mu)/k_B T}$$

holes in VB

$$p_{\nu} = \int_{-\infty}^{E_{\nu}} g_{\nu}(E) \cdot [1 - f(E)] dE$$

= $\int_{-\infty}^{E_{\nu}} \frac{1}{2\pi^{2}} \left(\frac{2m_{h}^{*}}{\hbar^{2}}\right)^{3/2} (E_{\nu} - E)^{1/2} \cdot e^{-(\mu - E)/k_{B}T} dE$
= $\frac{1}{4} \left(\frac{2m_{h}^{*}k_{B}T}{\pi\hbar^{2}}\right)^{3/2} e^{-(\mu - E_{\nu})/k_{B}T}$
= $P_{\nu}(T)e^{-(\mu - E_{\nu})/k_{B}T}$

$$P_{v}(T) = \frac{1}{4} \left(\frac{2m_{h}^{*}k_{B}T}{\pi\hbar^{2}} \right)^{3/2} = 2.5 \left(\frac{m_{h}^{*}}{m_{0}} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

$$N_{c}(T) = \frac{1}{4} \left(\frac{2m_{e}^{*}k_{B}T}{\pi\hbar^{2}} \right)^{3/2} = 2.5 \left(\frac{m_{e}^{*}}{m_{0}} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

$$P_{v}(T) = \frac{1}{4} \left(\frac{2m_{h}^{*}k_{B}T}{\pi\hbar^{2}} \right)^{3/2} = 2.5 \left(\frac{m_{h}^{*}}{m_{0}} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

effective density of states (有效态密度) no physical meaning, just two constants

Ε when T > 0 K $n_{c} = N_{c}(T)e^{-(E_{c}-\mu)/k_{B}T} > 0$ ► **k** $p_v = P_v(T)e^{-(\mu - E_v)/k_BT} > 0$

conductivity

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

T > 0 K thermalization 热激发 **CB and VB are partly filled** conductor

at equilibrium, $n_c p_v$ is a constant

Carriers in Semiconductors

- For calculations here, we go back to classical physics, assume:
 - Carriers are much fewer than DOS

- Carriers are non-Degenerate (Boltzmann Distribution)
- □ Carriers are almost in the same energies (E_c and E_v)
- Carriers have the same velocities and motilities

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

Mass Action Law - A Little Notion

The product of electron and hole concentrations is a constant, at a fixed temperature

$$n_c p_v = n_i^2 = N_v(T) P_v(T) e^{-E_g/k_B T}$$

In water, the product of H⁺ and OH⁻ concentrations is also a constant

$$[H^+][OH^-] = K_w = 10^{-14} (mol/L)^2 (at 25 °C)$$

Both are originated from classical statistics (nondegenerate, Maxwell-Boltzmann distribution), not related to quantum mechanics

Thank you for your attention